metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhong-Lu You,* Jia Wang and Xiao Han

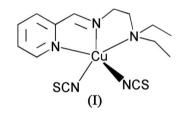
Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: youzhonglu@yahoo.com.cn

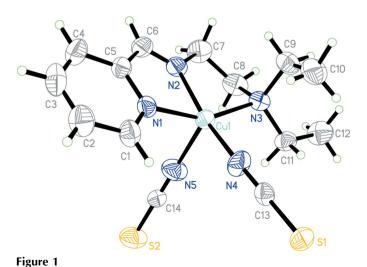
Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.009 Å R factor = 0.044 wR factor = 0.108 Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


[*N*,*N*-Diethyl-*N*'-(2-pyridylmethylene)ethane-1,2-diamine]dithiocyanatocopper(II)

The title compound, $[Cu(NCS)_2(C_{12}H_{19}N_3)]$, is a mononuclear copper(II) complex. The Cu^{II} ion is five-coordinated in a square-pyramidal configuration by three N atoms of the Schiff base ligand, and by two terminal N atoms from two thiocyanate anions.


Received 5 March 2006 Accepted 22 March 2006

Comment

Recently, we have reported the crystal structures of a few Schiff base copper(II) compounds (You, 2005, 2006; You & Zhu, 2006). As an extension of the work on the structural characterization of these compounds, the new title copper(II) compound, (I), is reported here.

Compound (I) is a mononuclear copper(II) complex (Fig. 1). The Cu^{II} atom is five-coordinated by three N atoms from a Schiff base ligand, and by two terminal N atoms from two thiocyanate anions, forming a square-pyramidal geometry. The Cu-N bond lengths and angles (Table 1) are comparable to the values observed in the Schiff base copper(II) complexes cited above. There are no significant intermolecular interactions in the crystal structure.

O 2006 International Union of Crystallography All rights reserved

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

N,N-Diethylethane-1,2-diamine and pyridylaldehyde were available commercially and were used without further purification. N,N-Diethylethane-1,2-diamine (0.1 mmol, 13.5 mg) and pyridylaldehyde (0.1 mmol, 10.7 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. To this solution was added an aqueous solution (2 ml) of NH₄NCS (0.1 mmol, 7.6 mg) and an MeOH solution (5 ml) of Cu(CH₃COO)₂·H₂O (0.1 mmol, 19.9 mg), with stirring. The resulting mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for 11 d, blue block-shaped crystals were formed at the bottom of the vessel. Analysis found: C 43.50, H 5.07, N 18.02%; calculated for C₁₄H₁₉CuN₅S₂: C 43.67, H 4.97, N 18.19%.

Crystal data

[Cu(NCS)₂(C₁₂H₁₉N₃)] Mo $K\alpha$ radiation $M_{\rm m} = 385.00$ Cell parameters from 3609 Tetragonal, P41 reflections a = 7.294 (1) Å $\theta = 2.4 - 25.1^{\circ}$ $\mu = 1.46~\mathrm{mm}^{-1}$ c = 33.549 (3) Å V = 1784.9 (4) Å³ T = 298 (2) K Z = 4Block blue $D_x = 1.433 \text{ Mg m}^{-3}$ $0.35\,\times\,0.12\,\times\,0.10$ mm

Data collection

Bruker SMART CCD area-detector diffractometer $R_{\rm int} = 0.031$ ω scan $\theta_{\rm max} = 27.5^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -9 \rightarrow 9$ $T_{\min} = 0.629, T_{\max} = 0.868$ $k = -9 \rightarrow 9$ 15425 measured reflections $l = -43 \rightarrow 43$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.108 S = 0.974084 reflections 201 parameters H-atom parameters constrained 4084 independent reflections 2778 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0581P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.24 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983); 1995 Friedel pairs Flack parameter: 0.027 (15)

Table 1

Selected geometric parameters (Å, °).

Cu1-N4	1.921 (4)	Cu1-N3	2.096 (4)
Cu1-N2	1.954 (3)	Cu1-N5	2.151 (5)
Cu1-N1	2.053 (4)		
N4-Cu1-N2	166.1 (2)	N1-Cu1-N3	155.49 (15)
N4-Cu1-N1	95.02 (18)	N4-Cu1-N5	97.2 (2)
N2-Cu1-N1	79.66 (18)	N2-Cu1-N5	96.25 (19)
N4-Cu1-N3	99.01 (17)	N1-Cu1-N5	98.6 (2)
N2-Cu1-N3	82.00 (17)	N3-Cu1-N5	99.4 (2)

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The U_{eq} values of the N and S atoms of the NCS groups are high compared to those of the C atoms. This may be a result of unresolved disorder or twinning $[F^2(\text{observed}) \text{ is greater than } F^2(\text{calculated}) \text{ for the reflec$ tions with greatest discrepancies].

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Scientific Research Foundation of the Education Office of Liaoning Province (Project No. 2005226).

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- You, Z.-L. (2005). Acta Cryst. C61, m339-m341.
- You, Z.-L. (2006). Z. Anorg. Allg. Chem. 632, 669-674.
- You, Z.-L. & Zhu, H.-L. (2006). Z. Anorg. Allg. Chem. 632, 140-146.